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Abstract

Background: Phylogenetic reconstruction is a necessary first step in many

analyses which use whole genome sequence data from bacterial populations. Invited Referees
There are many available methods to infer phylogenies, and these have various 1 2 3
advantages and disadvantages, but few unbiased comparisons of the range of

approaches have been made. ["reviseo ] o

Methods: We simulated data from a defined 'true tree' using a realistic version 2 report

evolutionary model. We built phylogenies from this data using a range of published

methods, and compared reconstructed trees to the true tree using two 29 May 2018

measures, noting the computational time needed for different phylogenetic

reconstructions. We also used real data from Streptococcus pneumoniae version 1 ? L ?
alignments to compare individual core gene trees to a core genome tree. g;ﬂz?;‘éw report report report

Results: We found that, as expected, maximum likelihood trees from good
quality alignments were the most accurate, but also the most computationally
intensive. Using less accurate phylogenetic reconstruction methods, we were 4 Lauren A. Cowley, Harvard T.H. Chan
able to obtain rfasults of comparaple accura.cy; .we found that approximate School of Public Health, USA

results can rapidly be obtained using genetic distance based methods. In real
data we found that highly conserved core genes, such as those involved in
translation, gave an inaccurate tree topology, whereas genes involved in
recombination events gave inaccurate branch lengths. We also show a
tree-of-trees, relating the results of different phylogenetic reconstructions to
each other.

Conclusions: We recommend three approaches, depending on requirements
for accuracy and computational time. For the most accurate tree, use of either
RAxML or IQ-TREE with an alignment of variable sites produced by mapping to
a reference genome is best. Quicker approaches that do not perform full Discuss this article
maximum likelihood optimisation may be useful for many analyses requiring a
phylogeny, as generating a high quality input alignment is likely to be the major
limiting factor of accurate tree topology. We have publicly released our
simulated data and code to enable further comparisons.
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(:I3757:3 Amendments from Version 1

In this version we have made suggested additions and changes
from the four reviewers.

New analysis includes the addition of two new tree building
methods into the comparisons: a neighbour-joining tree from
Hamming distances, and a maximum likelihood tree using both
SNP and binary gene presence/absence as input partitions. We
have also included a comparison of using ascertainment bias
correction in the two best performing methods, as suggested by
a reviewer. On the simulated data we looked at the treespace of
a posterior of trees from a Bayesian method, to further explore
uncertainty output by phylogenetic software methods. Using
real data, we looked at the accuracy of a tree from all ribosomal
proteins, and found it to be more accurate than any single
gene tree. We have updated Figure 4, and the Supplementary
materials.

See referee reports

Introduction

Phylogenetic analysis is a complex task, but one that is foun-
dational to many applications in bacterial genetics: molecular
evolution, outbreak tracing and genomic epidemiology, to name a
few'”. The modern genomic analyst faces a bewildering array of
options at every stage of the process.

The possible number of trees for even a small number of tips is
enormous’ — for 96 tips there are 10'7 possible trees (compare this
to 10% atoms in the observable Universe, or even 10'® possible
games of chess). Fortunately, sophisticated software methods allow
us to sensibly navigate through this space to the most likely trees.

Generally the steps taken when analysing a population of
bacteria that have been whole genome sequenced are as follows.
Quality control of the raw data must first be performed, after
which a whole-genome alignment of the sequences is produced.
The alignment is usually produced by mapping reads to a reference
sequence (of which many likely exist), but may also be obtained by
de novo assembly followed by whole-genome alignment (either by
progressive local alignment, or through multiple sequence alignment
of orthologous genes and intergenic regions). Many methods are
available to map reads to a reference, assemble reads into contigs
and align contigs or genes, and each method will typically have
many options. This alignment is the key input for phylogenetic
inference software. Even more methods, with yet more com-
plex options, exist to determine the most likely phylogeny given
a sequence alignment. Alternatively, one may forgo alignment
altogether, and opt instead for a k-mer distance-based approach
followed by a neighbor joining tree.

Understandably, this complexity and range of choice means that
methods sections of papers using phylogenetic analysis are often
different between studies. This disparity is likely due to differ-
ent software preferences (familiarity, speed and usability being
major factors in this choice), rather than an informed choice based
on the biological question and resources to hand. One should
carefully consider what question the tree is trying to address: is
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it to look at overall population structure, or to try and find
precise relationships between closely related isolates? The
relative merits of different approaches are difficult to objec-
tively assess, even after careful reading of the original method
manuscripts. The potential effect of different combinations of
approaches at each step in the process between raw sequence reads
and the final phylogeny has seldom been explored.

It is therefore desirable to provide a comparison between
phylogenetic methods that is focused on methods’ ability to answer
the biological question at hand. Some previous attempts have been
made, using either simulated data, experimental evolution, or an
assumption that the maximum likelihood phylogeny is correct.
One such study assessed the running times and likelihood of
trees drawn from simulated data using two pieces of software
(RAXML and FastTree), assuming the model of sequence evolution
is correct”. A larger study in eukaryotes compared these two methods
with IQ-TREE in terms of the best likelihood obtained using both
species and gene trees’. Other small-scale comparisons include a
comparison of read-to-tree pipelines with other pieces of software®,
and the production of “well characterised” reference datasets for
testing methods’. A recent study instead used an Escherichia coli
hypermutator to conduct experimental evolution along a defined
balanced phylogeny, and then by sequencing the strains at the tips,
the authors compared the ability of 12 combinations of methods to
reconstruct the correct phylogenetic relationship®. An overview of
how the most commonly used combinations of methods perform in
terms of phylogeny accuracy, as opposed to best likelihood, does
not yet exist. Comparison of likelihoods alone assumes that we
know the true evolutionary model, and doesn’t allow us to evaluate
in what way the tree is wrong.

In this paper we present a simulation-based analysis of the speed,
ease of use, and accuracy of some of the common ways to obtain
a phylogeny from bacterial whole genome sequence data. We
define a true tree, from which we produce whole genome sequence
data using realistic simulations (thereby avoiding the problem of
circularity of model choice). A range of methods are then evaluated
for accuracy using appropriate metrics in tree space. We hope to
provide some insight into which approaches should be favoured in
certain settings while acknowledging that our simulations are far
from comprehensive. We also make our code and simulated data
publicly available in the hope that this might inspire further method
comparisons aimed at different settings.

Methods

Simulating bacterial populations — assemblies and
alignments

We wished to simulate genomes in a realistic way, without using
the same model of evolution that any one software package uses
to compute tree likelihoods or sequence distances in order to
reconstruct the tree. This would be circular, and would result in that
software package necessarily performing best.

For the simulations we used parameters for Streptococcus
pneumoniae, whose evolution has been extensively studied
using genomic data, but artificially used a tree topology from
another species which had desirable properties for downstream
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comparisons. We therefore used Artificial Life Framework v1.0
(ALF)’ to simulate evolution along a given phylogenetic tree, for
the 2 232 coding sequences in the S. pneumoniae ATCC 700669
genome'’ as the MRCA. As well as modeling SNP evolution, ALF
also allows for short insertions and deletions (INDELSs), gene loss
and horizontal gene transfer events which occur in real populations
but are usually not included in phylogenetic models. In parallel,
we used DAWG v1.2'" to simulate evolution of intergenic regions
(defined as sequence not annotated as a CDS). We identified a
phylogeny (Figure 1), originally produced by Kremer et al.'” from
a core genome alignment of 96 Listeria monocytogenes genomes
from patients with bacterial meningitis which possessed a number
of qualities we wished to be able to reproduce. Particularly, it
had two distinct lineages (also making midpoint rooting suitable,
and negating the strong dependence on correct rooting implicit
in the Kendall and Colijn metric'®), several clonal groups within
each lineage, long branches and a polyphyletic population cluster.
Population clusters were estimated from the resulting core genome
alignment from simulations using Bayesian Analysis of Population
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Structure v6.0 (BAPS)'*. We define N as the number of strains in the
study and M as the number of aligned sites.

We used realistic parameters, as far as possible, for the simula-
tion run with ALF. To estimate rates to use in the generalised
time-reversible (GTR) matrix and the size distribution of INDELs,
we first aligned S. pneumoniae strains R6 (AE007317), 19F
(CP000921) and Streptococcus mitis B6 (FN568063) using
Progressive Cactus v0.0'%. This whole genome alignment allowed
calculation of SNP and INDEL rates for these models. We used
previously determined parameters for the rate of codon evolution'®,
relative rate of SNPs to indels in coding regions'’, rates of gene loss
and horizontal gene transfer'® when running the simulation. We then
used ALF with these parameters to simulate the evolution of coding
sequences from the root genome along the given phylogeny. For the
intergenic regions we used the same GTR matrix parameters and
previously estimated intergenic SNP to INDEL rate'’. We combined
the resulting sequences of coding and non-coding regions at tips
of the phylogeny while accounting for gene loss and transfer, and
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Figure 1. The phylogeny inferred by Kremer et al.’? used as the true tree in simulations. Tips are coloured by BAPS cluster inferred from

the core genome alignment.
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finally generated error prone Illumina reads from these sequences
using pIRS vI.11". An overview of this process is shown in
Supplementary Figure 1 (Supplementary file 1).

To generate input to phylogenetic inference algorithms, we cre-
ated assemblies and alignments from the simulated reads. We
assembled the simulated reads into contigs with velvet v1.2.09%
using https://github.com/tseemann/VelvetOptimiser to choose an
optimal coverage cutoff and k-mer size (between 37 and 81). We
then improved and annotated the resulting scaffolds using the
sanger-pathogens improvement pipeline with default parameters”’.
We generated alignments by mapping reads to the TIGR4 reference
using bwa-mem v0.7.10 with default settings, and called variants
from these alignments using samtools v1.2 mpileup and bcftools
call”. We used Roary 1.007001** with a 95% BLAST ID cutoff
to construct a pan-genome from the annotated assemblies, from
which a core gene alignment was created with MAFFT v7.205%.
Downstream analysis using genes was done using this pan-genome.
We then created alignments using two further methods. For an
MLST-like alignment we selected seven genes at random from the
core alignment (present in all strains) which had not been involved
in horizontal transfer events. For a Progressive Cactus alignment,
we ran the software on the assemblies using default settings,
and extracted regions aligned between all genomes from the
hierarchical alignment file and concatenated them.

Methods of phylogeny reconstruction
Using the nucleotide alignments described above as input, we ran
the following phylogenetic inference methods:

¢ RAXML v7.8.6*
GTRGAMMA).

with a GTR+gamma model (-m

e RAXML v7.8.6 with a binary+gamma sites model (-m
BINGAMMA).

e IQ-TREE vl.6.betad”” using a GTR+gamma model (-m
GTR+G) (denoted slow) and using GTR and the -fast
option (denoted fast).

¢ IQ-TREE vl.6.beta4 with mixed partitions with matched
branch lengths and varying evolutionary rates (-spp). We
used a GTR+gamma model (-m GTR+G) for the SNP
alignment, and a binary GTR model (-m GTR2) for gene
presence/absence.

e FastTree v2.1.9% using the GTR model (denoted slow) and
using the -pseudo and -fastest options (denoted fast).

e Parsnp v1.2% on all assemblies using the -c and -x options
(removing recombination with PhiPack).

We attempted to run the REALPHY v1.12 pipeline®, but it was
not computationally feasible due to the slow mapping step (using
bowtie2) not being parallelisable by strain.

We also created pairwise distance matrices using:
e Mash v1.0" (default settings) between assemblies.
e Andi v0.9.2°" (default settings) between assemblies.

e Hamming distance between informative k-mers using a
subsample of 1% of counted k-mers from assemblies™.
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e Hamming distance between SNP sites produced by Disty
McMatrixface v0.1.0.

» JCand logdet distances between sequences in the alignment,
as implemented in SeaView v4.0%.

» Distances between core gene alleles (present in 100% of
isolates) from the roary alignment. We added a distance of
zero for each core gene with identical sequence, or added
a distance of one if nonidentical, as used in the BIGSdb
genome comparator module™.

e Normalised compression distance (NCD)*, using PPMZ as
the compression tool*.

For all the above distance matrix methods we then constructed a
neighbor joining (NJ) tree, a BIONJ tree’’ using the R package
ape, and an UPGMA tree using the R package phangorn. In the
comparison we retained the tree building method from these three
with the lowest distance from the true tree (see below).

Quantifying differences between phylogenetic tree
topologies

To measure the differences in topology between the produced trees
(either between the true tree and an inferred tree, or between all dif-
ferent inferred trees) we used two measures. As a sensitive measure
of changes in topology we used the metric proposed by Kendall
and Colijn" setting A = 0 (ignoring branch length differences). We
choose to ignore branch length differences as maximum likelihood
methods (which will perform much better) will not be compara-
ble with distance based approaches. We also decided that topol-
ogy difference was more intuitive over the range of methods we
tried, rather than the combination of topology and branch lengths
that setting A > 0 would give. We compared the true tree against
randomly generated trees from the ape function rmtree, which
randomly splits edges. After midpoint rooting this gave 286
(95% CI 276-293) as a comparison to poor topology inference.
To illustrate how these numbers correspond to actual changes in
topology we used the plotTreeDiff function from the treespace
package for three representative comparisons (see interactive
treespace plots or static Supplementary Figure 2—Supplementary
Figure 5 (Supplementary File 1).

For trees distant from the true tree by the KC metric it was useful
to test whether the tree was accurate overall and only a few clade
structures were poorly resolved, or whether the tree failed to capture
important clusters at all. We therefore checked the clustering of the
BAPS clusters from the true alignment on each inferred tree. We did
this with both the primary BAPS cluster, which separates the two
main lineages, and the secondary BAPS clusters which define finer
structure in the data and includes a polyphyletic cluster. For each
BAPS cluster, we assessed whether tips were clustered correctly by
checking whether it was still monophyletic in the inferred tree, and
whether the polyphyletic cluster was still split in the same way.

Core gene trees from real data
We used a previously generated core genome alignment from
616 S. pneumoniae samples isolated from the nasopharynx of
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asymptomatically carrying children in Massachusetts®~!. We ran
IQ-TREE on the whole alignment using a GTR model (-m GTR).
We then aligned each core gene at the codon level with RevTrans
v1.10*, and then ran IQ-TREE on each nucleotide alignment using
the same model. We calculated the KC metric with A = 0 between
all these pairs of trees, and used treespace to perform multi-
dimensional scaling in two dimensions to visualise the pair-wise
distances™*.
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Results

Table 1 and Figure 2 show the results of our simulations, ranked
by their KC distance from the true tree. We note that all methods
except for the NCD were able to recapitulate the population clus-
ters as defined by BAPS. Additionally, all methods found a consist-
ent midpoint root. This is reflected by the KC metric scores which
would be significantly higher if there were ‘deeper’ differences in
the tree topologies, particularly concerning the root position.

Table 1. Accuracy and resource usage of phylogenetic reconstruction methods, ordered by KC metric score. The method lists the
best combinations of all alignment with phylogenetic method, and distance matrices with phylogenetic methods. Three scores of accuracy
of the phylogeny are shown; the KC metric is described in the text, the BAPS scores (the primary and secondary clusters, respectively) are
a tick if the clusters are as in the true tree, otherwise which clusters are wrong (all clusters, or just the polyphyletic clusters). Parallelisability
shown is that built into the software, “completely” is when every value in a distance matrix is independent so can be parallelised up to N\?
times. Accessory indicates whether accessory elements (not present in all isolates) are used in the phylogenetic inference.

Method KC BAPS1 BAPS 2 CPU time Memory  Overheads Parallelisability Accessory Recommended
(0-286) genome?

RAXML + close 463 vV v 806.5 minutes 2.7 Gb Mapped Pthreads No NA (artificial)
reference alignment
alignment
RAXML 12 v 4 587 minutes 3.0 Gb Mapped Pthreads No Accurate
+ alignment alignment but slow
IQ-TREE (slow) 12 v v/ 703 minutes 3.2 Gb Mapped Pthreads or MPI No Accurate
+ alignment alignment but slow
IQ-TREE (fast) 13 v 4 14.6 minutes 1.1 Gb Mapped Pthreads or MPI  No Accurate/fast
+ alignment alignment tradeoff
Parsnp 140 vV v 425 minutes 2.6 Gb Assemblies  Threads No Artificial
FastTree 16.0 v v/ 189 minutes 10.6 Gb Mapped Threads No Accurate/fast
+ alignment alignment (up to 4) tradeoff
RAXML + core 186 Vv v 29.2 minutes 154 Mb Core gene  Pthreads No Comparable
gene alignment alignment to mapping
NJ + SNPs 205 Vv v Negligible Negligible Mapped No No No
alignment alignment
IQ-TREE + mixed 245 v v/ 1316 minutes  3.2Gb Mapped Pthreads or MPI  Yes No
partitions alignment

+ accessory

genes
BIONJ + mash 517 v v 0.75 minutes 10 Mb Assembly Completely Yes Best, when no
distances alignment
RAXML + Seven 626 Vv v 1.4 minutes 19 Mb Assembly Pthreads No No
gene
alignment (MLST-
like)
BIONJ + andi 66.0 v polyphyly  7.48 minutes 290 Mb Assembly Completely Yes No
distances
RAXML + Cactus 672 v v 9 600 minutes  37.4 Gb Assembly Threads No No
alignment
RAXML + gene 773 polyphyly  4.28 minutes 20 Mb Core gene  Threads Yes No
presence/absence alignment
BIONJ + k-mer 89.6 v 4 37.3 minutes 180 Mb Assembly Threads Yes No
distances
NJ + ANI/ 981 v polyphyly  Negligible 230 Mb Mapped No No No
Hamming alignment
distances
BIONJ + BIGSdb- 150 v polyphyly  0.48 minutes  Negligible Assembly Completely No No
like
UPGMA + NCD 210 v/ all 1040 minutes Negligible Assembly Completely Yes No
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Figure 2. Ordered accuracies from Table 1, showing the CPU time required for each tree. There are large changes in accuracy between
the alignment and distance methods, and again between two inaccurate distance methods.

For construction of a maximum likelihood (ML) tree, RAXML
is one of the most heavily used and efficient software methods
available. As expected, this was the most accurate method tested,
and also the most resource heavy (apart from whole-genome align-
ment, discussed later). RAXML’s model is a close fit to the model
used to generate the data, and this model is expected to be a good
model of evolution. There was no significant difference in the like-
lihood of the fit of the inferred tree and the true tree under this
model (LRT = 2.34; p = 0.13). When using an alignment against
a different reference genome from the one we actually used in
the simulations, as is more likely to be the case in real alignment
production, RAXML was tied for accuracy with IQ-TREE which
also produced the same tree. In our simulations RAXML had better
resource requirements than IQ-TREE, though over a range of data
the programs are likely comparable.

A common consideration with ML trees from alignments is whether
to include all sites, or remove the constant sites and analyse just
SNP sites. The potential advantage of the latter approach is to
reduce memory usage, which is particularly important when ana-
lysing huge alignments with thousands of sequences. Selecting just
the polymorphic sites introduces an ascertainment bias which can
cause branch lengths to be overestimated, so a correction needs to
be applied to prevent this**. Both RAXML and IQ-TREE implement
this correction, so we compared tree accuracy and resource use
between these two modes (Supplementary Table 1; Supplementary
file 1). We found similar topology in both modes, and if anything

more accurate branch lengths when using polymorphic sites with an
ascertainment bias correction. Most importantly, resource use (CPU
time and maximum memory use) was much lower when using only
variable sites — we would therefore recommend this approach over
using the full alignment.

Partial alignment methods or alternative reconstruction
give good trees

Knowing the quality of maximum likelihood trees, one approach
a user may take to reduce the large computational requirements is
to reduce the number of sites M that are included in the alignment.
Some common ways this can be achieved are either by finding clus-
ters of orthologous genes and only using sites from “core” genes
(those present in every sample), or by using an alignment of the
pre-defined MLST genes. In this test we found that using a core
genome alignment slightly reduced the accuracy, whereas using an
alignment of seven genes, similar to MLST, reduced the accuracy
greatly, as only a small proportion of the genomic variants are now
used in the inference.

Other than as a way to reduce computational burden, core genome
alignment may increase the accuracy of the input alignment by
excluding mismapping of repetitive regions and minimising
bias from missing data in accessory genes. However, there is the
issue that when a variant is present in a region overlapped by two
genes it will be erroneously represented twice. When analysing a
whole species, particularly when the core genome contains only a

Page 7 of 34



fraction of the overall diversity, this can also lead to a loss of
resoution within lineages. One way to avoid this is by first defining
lineages, then producing a separate alignment and tree for each.
In this case one should take advantage of multiple reference
genomes by selecting one that is genetically close to each lineage
to produce the alignment.

When performing phylogenetic analysis, the user should consider
whether they want to include the accessory genome in their inference
(final column in Table 1). In this simulation, evolution of the core
and accessory genome are correlated, so that including the acces-
sory genome improves accuracy over using core genome alone. In a
species such as Streptococcus pneumoniae where multiple distinct
lineages are maintained over time, the core and accessory evolution
tend to be correlated in this way*’. In some other species, for exam-
ple Staphylococcus aureus®, the accessory genome is dominated by
mobile elements such as transposons and phage (the same is also
true within a single lineage of S. pneumoniae). In species such as
Escherichia coli accessory genes are highly mobile®. In both cases
the evolutionary signal from accessory genes is discordant from
core genome evolution, so including these in the alignment will
not give a good estimate of vertical evolutionary distance between
strains. In other situations the core and accessory genome may both
carry signals of vertical evolution, but they may be discordant with
each other due to different evolutionary processes acting on each
type of variation. A binary model of evolution can be used to build
a maximum likelihood tree based on accessory gene gain and loss
(RAXML + gene presence/absence), but we found that its accu-
racy is much lower than a model of SNP variation within genes.
A possibility for combining these two data types would be to have
separate model partitions for SNP variation and gene gain/loss. We
have provided an example of this using IQ-tree on the simulated
data, though we found this actually reduced accuracy of the result-
ing topology (KC score 24.5). Possible issues with this approach
are that genes which are discordant with the phylogenetic signal
from vertical evolution of the core genome (e.g. mobile genetic ele-
ments) may reduce accuracy, and incorrectly split orthologues in
the accessory genome.

To further investigate core genome alignment, we compared indi-
vidual gene trees to a core genome tree in a real population of
S. pneumoniae genomes. We created trees from all core genes,
and compared them by projecting pairwise KC distances into two
dimensions (Figure 3). The figure shows that the core genome tree
behaves like an ‘average’ of the individual core gene tree topolo-
gies, without being biased by the bad topologies produced at dis-
tances far from the center of the main cluster. Looking at the distant
topologies, we found that the genes giving these trees were mostly
ribosomal related proteins. These alignments contained very little
variation due to their highly conserved function, providing little
information for phylogenetic resolution — the root and ancestral part
of these topologies were different from the core genome alignment
tree, likely due to random placement of nodes, giving highly diver-
gent KC distances. Reassuringly, concatenating these 82 ribosomal
gene alignments and producing a tree performed better than any
individual gene alignment (KC distance = 1362), giving more
confidence in rMLST schemes.
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The gene trees closest to the whole core gene alignment tree were
those with the most variation. When we included branch lengths in
the distance measure (A = 1 in the KC metric), very short branch
lengths contribute far less to the tree distance than longer lengths,
and the ribosomal genes are no longer outliers. Many of the fur-
thest gene trees from the core genome tree are from genes known to
be involved in recombination events™, as shown in Supplementary
Table 2 (Supplementary File 1). Recombinations result in a large
number of SNPs against a reference; because phylogenetic meth-
ods assume vertical evolution, recombination tends to inflate esti-
mated branch lengths, but generally do not affect topology®'. The
best practice is to try to remove these regions before performing
phylogenetic reconstruction®. When picking an MLST scheme for
an organism the most important considerations are probably reca-
pitulation of epidemiological parameters, ease and consistency of
use’”. However, given a choice of suitable genes to use, ranking of
these phylogenetic signals may be a useful additional considera-
tion. Searching through combinations of different gene alignments
suggested little interaction between them affecting the final topol-
ogy; the upshot being that genes that individually perform well can
be considered as candidates without worrying about the specific
combination chosen.

We also evaluated the quality of a phylogeny drawn from a pro-
gressiveCactus alignment'®, which performed best in a comparison
between whole genome aligners™. Whole genome alignment uses
linear sequences in an annotation-free manner, and by breaking the
alignment job into smaller local regions can align sequences in the
presence of structural variation such as gene gain and loss, inversions
and transversions — both core and accessory elements are aligned.
In this comparison, the core genome alignment we extracted was
smaller than that produced by Roary, and therefore produced a less
accurate phylogeny. This class of methods is therefore best suited to
comparing small numbers of genomes from larger evolutionary dis-
tances (across species), rather than large numbers of more closely
related genomes.

In the search for greater computational efficiency, rather than
changing the alignment one may instead opt to use a different
method of phylogenetic inference. One piece of software which
aims to infer phylogeny faster than a maximum likelihood method,
albeit at the expense of accuracy, is FastTree”. In our test Fast-
Tree ran four times faster than RAXxML, without much decrease in
accuracy. We found little difference in accuracy when using the fast
and slow options. The scaling of CPU time in FastTree by number
of sequences is more favourable than RAXML, so as the number
of sequences increases the relative speedup of FastTree will also
increase. It should also be noted that FastTree obtains around a 2x
speedup from using four CPUs using OpenMP, whereas RAXML
can use around 16 threads at close to 100% efficiency.

Parsnp® produces a core genome alignment by rapidly finding max-
imal exact matches (MEMSs, as in nucmer) which can include both
genes and intergenic regions. The use of MEMs means that assembly
quality will affect parsnp results, which was designed for use with
reference-quality genomes (for example, those produced by SMRT
sequencing. In our test we found that it performed even better than
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Figure 3. A multidimensional scaling plot of the KC distances between all core gene trees from a real population of 616 S. pneumoniae
genomes. Top: topology distances (4 = 0); bottom: branch length distances (1 = 0). The core genome tree from the concatenated alignment
is shown in yellow; trees from ribosomal proteins, which tended to have different topologies due to their lack of variation, are shown in blue.
The top twenty divergent trees by branch length are listed in Supplementary Table 2 (Supplementary File 1). The full list of distances by gene
can be accessed at https://gist.github.com/johnlees/da164a4260e13528e8315e266a46bf3f.
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FastTree while using less CPU time, however our assemblies from
simulation are likely more amenable to comparison of MEMs than
real data, which is more fragmented. The method does not deal well
with mobile elements or recombination, so extra caution should be
used with real datasets where this variation is prevalent.

Finally, we saw very promising results when using the “fast” mode
of IQ-TREE, currently available in beta. Reconstruction in this case
was as accurate as a full maximum likelihood method, and com-
pleted quickly with modest memory requirements. Once available
as a stable release, this may prove to be the most accurate way to
efficiently infer large phylogenies.

Genetic distance based approaches rapidly give a rough
tree topology

Early phylogenetic methods involved drawing a neighbour join-
ing tree from a matrix of pairwise distances between all tips. This
method is fast and simple. When we used distances calculated from
the same alignment as RAXML this approach was somewhat worse
than the reduced number of sites or reduced accuracy methods
above, but still gave a good overall topology — better than an ML
tree from seven core genes (similar to MLST). A tree can also be
drawn from distances using BIONJ, which by using a simple evolu-
tionary model can be expected to provide trees with more accurate
topologies than NJ*’. Another alternative is UPGMA, though as a
hierarchical clustering method it would not be expected to recover
the same topology as a phylogenetic method (but perhaps the same
clusters).

However, in the present era, we see the main advantage of this class
of methods as being able to avoid having to create an alignment
from mapping™. If one is able to calculate genetic distances from
assemblies or even directly from reads, the relatively costly and
challenging step of creating a large multiple sequence alignment
can be avoided. Although N? distances need to be evaluated, these
calculations are independent so the process is trivially parallelis-
able. We tried creating trees from five methods which can evaluate
pairwise distances rapidly: mash, andi, k-mer distances, BIGSdb
and the normalised compression distance (NCD).

The NCD is a general method to compare the similarity between
any two data objects”. The NCD between two objects x and y (in
this case the sequence of assemblies) is computed as follows:

Z(x,y)- min[Z(x), Z(Y)]
max [Z(x), Z(y)]

NCD(x, y)=

where Z(x) is the size after compression of file x. The rationale is
that the more two sequences are similar to each other, then the more
the compression method will be able to use this similarity to reduce
the overall size of the concatenated file towards the lower limit of
the size of the compressed individual files. We used PPMZ as the
compressor to avoid issues with minimum block size®, but only
recovered the largest scale feature of the two main lineages in the
topology. This suggests the the NCD is not well suited to finding
distances between sets of closely related sequences, but may per-
form better with more distant genomes. PPMZ may not be the best
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compressor overall due to its long run time, but we did not investi-
gate this further.

BIGSdb is a database designed to store bacterial sequences, and per-
form pre-defined analysis rapidly on them*. Trees from genomes in
this database can be produced with the GenomeComparator mod-
ule. This works by comparing the alleles of core gene sequences,
increasing the distance between two genomes by one for each allelic
difference between the genes that they have. The potential advan-
tage of this is that recombination events will correctly be counted
as a single evolutionary change, rather than as multiple separate
SNP difterences. However, this approach also limits resolution and
inference of intra-cluster distances, and produced one of the worst
topologies in our tests.

Finally, we used k-mer distances®’, mash®’ and andi®’ to create dis-
tance matrices. andi counts the number of mismatches between
equally spaced maximal exact matches between a pair of sequences.
mash was partly designed as an improvement to the accuracy of
andi, and instead uses the MinHash algorithm to rapidly approxi-
mate the Jaccard distance between the sets of k-mers in each assem-
bly. This is also the distance approximated by our k-mer method,
but is many-fold more efficient due to the use of MinHash. In our
test, we found that mash performed the best out of any distance-
based measure in accuracy and efficiency, but was still significantly
less accurate than the alignment-based methods. Considering the
ease of use and efficiency of mash, its ability to recover population
clusters means that it could be recommended as the tool of choice
for first-pass analysis.

Discussion

We have analysed the ability of a range of phylogenetic inference
methods to reproduce the topology and clustering of a known tree
when given realistic simulated data derived from the same known
tree. Figure 4 shows an alternative presentation of our results: a
tree-of-trees, also showing the ways in which some of the incorrect
trees may be similar to each other.

Overall, we found that modern maximum likelihood methods and
a good alignment can obtain an accurate phylogeny in reason-
able runtimes; using approximate phylogeny methods with a good
alignment is the next best thing, followed by reducing the align-
ment size. The best quality results had the longest computational
time requirements, consistent with our mechanistic understanding
of how phylogenetic inference should perform. We would expect
maximum likelihood approaches to do well on molecular data, and
to take more time than distance based methods™. For rough analy-
sis, genetic distances as produced by mash can be used for cluster-
ing and to produce a rough coarse-grained topology. Consideration
of whether to include the accessory genome in the inference or to
analyse it separately is important, and will be dependent on the spe-
cies and lineage being studied.

Choice of method will also depend on why the tree is being built
in the first place. If it is for overall population structure, then a
more approximate approach will likely suffice, as such analysis is
unlikely to delve into precise topology differences at the tips of the
tree. All the approaches we recommend were able to recover the
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True tree
RAXML + 23F aln

IQ-TREE slow . Alignment-based
RAXML . Partial alignment
1Q-TREE fast . Distance-based
FastTree (alignment)
Parsnp . Distance-based
RAXML + core aln (alignment-free)
NJ + JC dist

IQ-TREE mixed partitions
BIONJ + kmer dist

BIONJ + mash dist
RAXML + MLST-like aln
RAXML + cactus aln
RAXML + pres/abs
BIONJ + andi dist

NJ + Hamming

BIONJ + BIGSdb-like
UPGMA + NCD

Figure 4. Tree of tree methods. Using the KC metric between all the inferred phylogenies in Table 1 to create a pairwise distance matrix, an
NJ tree created from this matrix. This shows how the topologies from all methods are related to each other (a tree-of-trees, or supertree). The
true tree is in orange at the top, and four classes of methods are labeled. For alignment-based methods the mapping of reads to the TIGR4
reference was used, unless explicitly stated. We also performed multi-dimensional scaling of these distances in two dimensions to show how
the methods clustered (see interactive treespace plots or static Supplementary Figure 6; Supplementary File 1).

correct population clusters with the simulated data. However, for
purposes such as transmission cluster inference or association of
epidemiological traits (for example a switch in location of isola-
tion) a more precise topology may then be desired.

We also directly compared a range of evolutionary models, run both
using BIONJ and ML (Supplementary Table 3; Supplementary
File 1). As there are a huge number of sites, and the sites are each
low-dimensional, we are much better informed about the site evolu-
tion model than the tree. It’s easier to get the tree wrong, and hence
the inference method used is a more important consideration for
tree accuracy. We do note that simpler evolutionary models require
less CPU time to run for comparable accuracy. Although maxi-
mum likelihood methods cope with missing data much better than
distance methods, the extensive missing calls in these simula-
tions (20-40% of sites, due to accessory genes) did not prevent the
distance based methods from giving an approximate topology.

For a small number of samples or if computational resources are
not a concern, and for phylogenetically focused questions such as
model comparison, then a maximum likelihood method is the best
choice. However a key point is that in many cases, especially when
using a large number of genomes and especially across species with
little phylogenetic signal, the phylogeny building software is not
the limiting factor in accuracy of the resulting tree. The alignment
used is crucial: the quality of sequencing and mapping, whether
mobile elements have been masked, and how much confounding
signal from recombination and homoplasy can be removed all have
important effects on the quality of the final tree. In many cases the
observed data are not consistent with a single phylogenetic tree,
so rather than aiming for the “best” tree it is important to assess
uncertainty in the tree. Bayesian methods are available but are

slow and complex”’* — we show an example of these on our simu-
lated data in Supplementary Figure 7 (Supplementary File 1). In
many cases we would therefore recommend using a faster method
such as IQ-TREE’s fast mode or FastTree, combined with boot-
strap analysis to more efficiently estimate the uncertainty in tree
topology™. We do note that the bootstrap estimate may be difficult
to interpret, as it does not behave as a standard confidence interval
due to the implicit assumption that sites are independent™. A recent
update to the bootstrap may instead be easier to interpret®', or using
the KC metric to compare bootstrap trees®.

For truly enormous datasets, particularly in cases where producing
an alignment is the limiting step, even these approximate methods
may prove intractable. In which case using pairwise distances from
mash is an alternative approach. One possible problem with mash
is that closely related sequences can have a distance of zero, but
this can be solved by increasing the sketch size with little extra
computational burden. We also note that though the MinHash dis-
tance is an approximation, it is a good one, and unlikely to be the
limiting factor in these analyses. Instead, accessory genome and
mobile elements may be a problem. In these simulations we also
tested mash using the core alignment directly, but this resulted in
a less accurate tree (KC distance = 71.6); the k-mers sampled by
mash do not utilise the information of homology implicit in each
column of the alignment.

This work is of course somewhat limited in initial scope. While we
tried to choose a true tree with common features, the simulations
here are limited, with parameters chosen to model a single spe-
cies. We also made the choice to ignore branch length differences
(though these can as easily be compared) as we think that topologi-
cal distance is more intuitive, especially for larger differences.

Page 11 of 34



Wellcome Open Research 2018, 3:33 Last updated: 30 MAY 2018

In an age of a bewildering array of options for this analysis and « Simulation parameters and results (including true alignments
few available direct comparisons we hope that our results are of all genes, assemblies and annotations from simulated
nonetheless instructive, and that these methods can continue to be reads): https://dx.doi.org/10.6084/m9.figshare.5483461%

compared using other benchmark datasets as they appear.
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Supplementary material
Supplementary File 1 - File contain the following supplementary tables and figures:

Click here to access the data.

Supplementary Table 1: Comparison of phylogeny accuracy using all positions versus SNPs plus an ascertainment bias correction for
maximum likelihood methods. The KC distance from the true tree, using topology only (1 = 0) and including branch lengths (4 = 1) is
shown. Resource use, as in Table 1, is shown for each method.

Supplementary Table 2: Twenty gene trees most distant from the core genome tree in 616 Streptococcus pneumoniae genomes when using
the KC metric with A = 1, which only considers branch lengths. The name of the gene, or its name in the S. pneumoniae ATCC 700669
genome is shown with the annotated function. Whether each gene was found to be a recombination hotspot in the PMENT1 clone, and
whether the hotspot has been specifically described previously are also shown.

Supplementary Table 3: Distance to the true tree for comparable models and methods. Three evolutionary models available both in 1Q-tree
and SEAVIEW, which were then used to build phylogenies using maximum likelihood (ML) or distances (BIONJ) respectively. Each model
has an increasing number of degrees of freedom (df). The KC distances for topology (4 = 0) and branch length (A = 1) are shown, along
with the CPU time used for ML inference.

Supplementary Figure 1: An overview of the simulation procedure. Blue boxes show input data: a starting tree and genome at the root,
for both evolutionary simulators ALF and DAWG; parameters for each simulator. Orange diamonds show processes: the simulators ALF
(for genes) and DAWG (for intergenic regions); perl scripts to combine these results maintaining changes in gene order; pIRS to simulate
error-prone reads. Yellow boxes show simulation output data: the full genomes for each sample at the tips of the input tree; aligned sequences
for each gene; error-prone reads from the genomes.

Supplementary Figure 2: Applying plotTreeDiff between true tree and the closest reconstruction, RAXML + 23F aln (distance 4.35). See
top an for explanation of plotTreeDiff.

Supplementary Figure 3: Applying plotTreeDiff between true tree and one a little further away, the fast IQ-tree (distance 11.3). See top for
an explanation of plotTreeDiff.

Supplementary Figure 4: Applying plotTreeDiff between the true BIGSdb-like (distance 149.8). See top for an explanation of
plotTreeDiff.

Supplementary Figure 5: Applying plotTreeDiff between the true and furthest, UPGMA + NCD (distance 210.5). See top for an
explanation of plotTreeDiff.
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Supplementary Figure 6: A multi-dimensional scaling plot of the distances between all methods projected into two dimensions. This view

is zoomed, so the worst methods are outside the plot boundaries.

Supplementary Figure 7: A multi-dimensional scaling plot of the distances between trees sampled from the posterior using mrbayes,
projected into two dimensions. There are two chains with different starting points, and the true tree is shown. Both chains appear to have
converged on the same regions of treespace (no clustering by colour). There are two favourable modes in this topology space, one of which

is closer to the true tree, but less frequently sampled than the other.
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The article by Lees et al. presents us with a very needed evaluation of currently phylogenetic
reconstructions methods, based on a simulation based approach. It is a very well written article in a
much-needed area and provides several important messages to researchers in this field. | thank the
opportunity to review such interesting and important work.

There are however some points that | believe would help the readers in better understanding the details of
the analysis, and some further information could help the study reproducibility and replication of results
(these are the points that | reported as Partly on my report) and my questions will focus on them.
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I will provide the comments per section:

Introduction
Very well written, succinct and full of important and relevant references.

1.

(Last sentence of introduction) Concerning providing the code and simulated data, | think all the
figshare files and github repositories are in need of a readme file which should contain a better
description of the commands and parameters used with some examples to reproduce the paper.
Otherwise the claim of reproducibility cannot be made. Even consider a repository for the
simulated reads used in this study.

Methods

The methods used by the authors show a tremendous amount of work using several software available to
reach their goals. This is highly commendable, but unfortunately also implies that partial description of
each software is needed to follow-up without the need of re-reading all the original articles. My following
comments are done having this in mind, and to facilitate the reproducibility of the steps:

1.

The authors state that they used ALF 1.0 to simulate the evolution along a given phylogenetic tree
of 2232 CDS of S. pneumoniae ATCC 700669. | assume that ALF must have some stochastic step
and, if such, a seed should be provided to reproduce the same results. Furthermore the phylogeny
used was a from a core alignment of Listeria monocytogenes that also has a BAPS classification.
At first sight this can be rather confusing for the reader. If | understood correctly, It should be
clarified that from the starting CDS, ALF was used to create a final tree with 96 simulated
S.pneumoniae strains from the original ATCC 700669, that would correspond to the same topology
as the tree from Kremer et al. | also assume that the BAPS groups were recalculated from the final
genomes. If so it should be stated on the article.

The estimation of the rates to use in GTR the authors used 3 strains (2 pneumo and 1 mitis as
outgroup. The claim that this “allowed calculation of SNP and INDEL rates across recent
S.pneumoniae evolutionary history” is a bit too extreme and should be moderated.

The authors then refer that used DAWG 1.2. to simulate evolution of inter-genic regions. Please
clarify how these were defined. The initial text seemed only to refer to the 2232 CDS. Maybe this
should be rephrased saying that both CDS and intergenic regions of ATCC 700669 were used in
simulating the evolution. Furthermore, the authors should explain how these two approaches can
be reconciled in a unique analysis, or at least explicitly state the artificial nature of the result (which
| don’t believe that has any impact for the purpose of the paper but should be clarified)

Why the choice of velvet for the assembler? Spades has been shown to provide much better
results. Furthermore, what were the parameters for velvet? Consider providing the command lines
(as supplemental material) for de novo assembly by velvet, for bwa-mem, samtools and roary, as it
will be very useful for readers that are new to the field.

Consider presenting a summary figure of the whole simulation process, since it would help to guide
the reader through the multiple steps done.

MLST: why choose 7-genes at random and not use the ones from the schema? | believe that this
can have highly misleading results when compared with the defined MLST schema and defining
this as MLST analysis mislead the readers.

. Methods of phylogeny reconstruction and Table 1. Consider numbering the enumeration of

methods presented in the text and make a correspondence in a column in Table 1. As it is it is not
easy to make the correspondence. For BIGSdb, how was missing data handled and what core
schema was used?

The Quantification of differences between phylogenetic tree topologies using the KC metric was an
excellent choice and the supplemental figures 1 to 3 are really illustrative examples. How are the
randomly generated trees generated? This should be added to this section.
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9. Core gene trees from real data. The use of MDS to visualize the pair-wise distances is really
necessary? An ordered heat-map of the KC metric for the samples would give similar information?
| understand the use of the MDS but my feeling is that the final comparison can be biased by the
methodology.

Results

1. “We note that all methods except for the NCD were able to recapitulate the population clusters as
defined by BAPS” | think this is an important conclusion because in many applications of the trees,
researchers compare partitions of the tree and not topology to arrive to their conclusions. In my
opinion this should be revisited in the Discussion.

2. Table 1: Add to the table legend the meaning of the “Accessory Genome” column. Also clarify in
the text what is the meaning of BAPS 1 and 2. Also explain the meaning of “all” (UPGMA+NCD) in
the legend)

3. “However, there is the issue that when a variant is present in a region overlapped by two genes it
will be erroneously represented twice.” What is a region overlapped by two genes in this context?
Were the CDS defined to allow this? This also raises the question what was considered CDS ?
Was it what was defined in the previous annotation?

4. Figure 3. See my previous comment to the use of MDS. Also the core genome tree does not
behave as average (or centroid) in this dataset and as appears it seems biased to the left of the
clusters. | believe that this can be a by-product of the MDS dimensionality reduction. A very
interesting result, is what concerns the ribosomal genes. This seems to clearly point out that their
use is bad in recapitulating phylogeny and | wonder of this is not only due to the artificial nature of
the dataset and similar studies in other species and other might elucidate this matter. It would be
interesting to reconcile such results with the results obtained from ribosomal MLST for example in
real datasets.

5. “When picking an MLST scheme for an organism, given a choice of genes to use, these
phylogenetic signals may be a useful additional consideration.” This sentence could be better
explained, since it seems really relevant. Could this approach be used as a method to evaluate the
choice of MLST target loci for each species?

6. “Although O(N?) distances need to be evaluated” — You mean N2 distances. No need for O
notation here.

7. On BIGSdb “However, this approach also limits resolution and inference of intra-cluster distances,
and produced one of the worst topologies in our tests.” Where were the topologies mismatches
more common? Within each cluster? Or between clusters? This is relevant because the way
information of allelic profiles is commonly used.

Discussion

Well written and informative. The caveats of this study are presented in a paragraph. | think the results of
this simulation provide good insights but | wouldn’t extrapolate to any other species and dataset.
Monomorphic and fastidious species would probably have more similar results using any approach and a
study on the impact of mutation and recombination parameters on the final tree-of-trees would be very
interesting to see as a future follow-up study.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes
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Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

John Lees, New York University School of Medicine, USA

Approved with Reservations

The article by Lees et al. presents us with a very needed evaluation of currently phylogenetic
reconstructions methods, based on a simulation based approach. It is a very well written article in a
much-needed area and provides several important messages to researchers in this field. | thank
the opportunity to review such interesting and important work.

There are however some points that | believe would help the readers in better understanding the
details of the analysis, and some further information could help the study reproducibility and
replication of results (these are the points that | reported as Partly on my report) and my questions
will focus on them.

Thank you for positive comments, and constructive criticisms below. We respond to each in turn,
where the point has not also been raised by one of the other reviewers.

| will provide the comments per section:

Introduction
Very well written, succinct and full of important and relevant references.

(Last sentence of introduction) Concerning providing the code and simulated data, I think all the
figshare files and github repositories are in need of a readme file which should contain a better
description of the commands and parameters used with some examples to reproduce the paper.
Otherwise the claim of reproducibility cannot be made. Even consider a repository for the
simulated reads used in this study.

This point has also been made by Dr. Ashton — we have significantly improved this aspect of the
data availability. We looked into making simulated reads available, but the size of the data proved
too large for the repository. We think that the commands used, as well as the data before and after
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read generation (including assemblies and mapped alignments) being available will suffice.

Methods

The methods used by the authors show a tremendous amount of work using several software
available to reach their goals. This is highly commendable, but unfortunately also implies that
partial description of each software is needed to follow-up without the need of re-reading all the
original articles. My following comments are done having this in mind, and to facilitate the
reproducibility of the steps:

As a general response, we have added the specific commands used to the github repository.

The authors state that they used ALF 1.0 to simulate the evolution along a given phylogenetic tree
of 2232 CDS of S. pneumoniae ATCC 700669. | assume that ALF must have some stochastic step
and, if such, a seed should be provided to reproduce the same results.

ALF was run with seed = 1. This is in the parameters file, which is now also on the github.

Furthermore the phylogeny used was a from a core alignment of Listeria monocytogenes that also
has a BAPS classification. At first sight this can be rather confusing for the reader. If | understood
correctly, It should be clarified that from the starting CDS, ALF was used to create a final tree with
96 simulated S.pneumoniae strains from the original ATCC 700669, that would correspond to the
same topology as the tree from Kremer et al. | also assume that the BAPS groups were
recalculated from the final genomes. If so it should be stated on the article.

We have modified the text to clarify these issues.

The estimation of the rates to use in GTR the authors used 3 strains (2 pneumo and 1 mitis as
outgroup. The claim that this “allowed calculation of SNP and INDEL rates across recent
S.pneumoniae evolutionary history” is a bit too extreme and should be moderated.

We have removed this statement.

The authors then refer that used DAWG 1.2. to simulate evolution of inter-genic regions. Please
clarify how these were defined. The initial text seemed only to refer to the 2232 CDS. Maybe this
should be rephrased saying that both CDS and intergenic regions of ATCC 700669 were used in
simulating the evolution. Furthermore, the authors should explain how these two approaches can
be reconciled in a unique analysis, or at least explicitly state the artificial nature of the result (which
| don’t believe that has any impact for the purpose of the paper but should be clarified)

We have clarified these issues, and also added more description on the github for the interested
reader.

Why the choice of velvet for the assembler? Spades has been shown to provide much better
results. Furthermore, what were the parameters for velvet? Consider providing the command lines
(as supplemental material) for de novo assembly by velvet, for bwa-mem, samtools and roary, as it
will be very useful for readers that are new to the field.

This was also raised in Dr Cowley’s review, which we have responded to above. Command lines

Page 19 of 34



Wellcome Open Research Wellcome Open Research 2018, 3:33 Last updated: 30 MAY 2018

have been added to the README on github.

Consider presenting a summary figure of the whole simulation process, since it would help to guide
the reader through the multiple steps done.

We have added a summary as Supplementary figure 1

MLST: why choose 7-genes at random and not use the ones from the schema? | believe that this
can have highly misleading results when compared with the defined MLST schema and defining
this as MLST analysis mislead the readers.

We have responded to this along with Dr. Cowley’s major comment #3 above, which raises the
same issue.

Methods of phylogeny reconstruction and Table 1. Consider numbering the enumeration of
methods presented in the text and make a correspondence in a column in Table 1. As it is it is not
easy to make the correspondence. For BIGSdb, how was missing data handled and what core
schema was used?

Unfortunately the bullet points for the methods in table 1 do not directly correspond to entries in
table, as in general there is a combination between an alignment/distance generation and then tree
generation method. We think it is clearest to keep table 1 as presented (also in line with figure 4) as
we have tried to choose common approaches. We have also kept the bullets in the methods to
avoid repetition of e.g. RAXML runs for different input alignments, and make it easier to read than
prose. We have added these details for BIGSdb.

The Quantification of differences between phylogenetic tree topologies using the KC metric was an
excellent choice and the supplemental figures 1 to 3 are really illustrative examples. How are the
randomly generated trees generated? This should be added to this section.

We have added this detail.

Core gene trees from real data. The use of MDS to visualize the pair-wise distances is really
necessary? An ordered heat-map of the KC metric for the samples would give similar information?
I understand the use of the MDS but my feeling is that the final comparison can be biased by the
methodology.

The MDS is useful for an initial exploration of the data, and was useful to prevent biasing by
assuming the core genome topology is ‘best’. However we take the point that this is the case for
this data, and therefore this representation may be favourable. We have therefore added a gist
which gives distances of each gene from the core genome tree, and has the advantage of being
sortable, searchable and downloadable.

Results

“We note that all methods except for the NCD were able to recapitulate the population clusters as
defined by BAPS” | think this is an important conclusion because in many applications of the trees,
researchers compare patrtitions of the tree and not topology to arrive to their conclusions. In my
opinion this should be revisited in the Discussion.
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See our response to Dr. Azarian’s major comment #1 above, which we think covers this issue.

Table 1: Add to the table legend the meaning of the “Accessory Genome” column. Also clarify in
the text what is the meaning of BAPS 1 and 2. Also explain the meaning of “all” (UPGMA+NCD) in
the legend)

We have added these necessary details.

“However, there is the issue that when a variant is present in a region overlapped by two genes it
will be erroneously represented twice.” What is a region overlapped by two genes in this context?
Were the CDS defined to allow this?

This is a potential issue with genes clustering in general (through roary, cgMLST or wgMSLT),
which we wished to point out to readers. For many bacterial genomes, CDS are annotated/defined
such that this is possible. Indeed, many genes in bacterial operons overlap, which may be
forgotten when looking at individual genes. For tree building it isn’t too much of an issue as there
are many correlated sites.

This also raises the question what was considered CDS ? Was it what was defined in the previous
annotation?

The CDS used for downstream analysis are those found through annotation of assemblies, not the
original definition (which may be overly generous, as some regions are hard to consistently
assemble and annotate but would appear perfectly in the simulations). We have clarified this in the
methods.

Figure 3. See my previous comment to the use of MDS. Also the core genome tree does not
behave as average (or centroid) in this dataset and as appears it seems biased to the left of the
clusters. | believe that this can be a by-product of the